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PURPOSE: To analyze the long-term behavior of earth satellites due to the gravita-
tional effects of the sun, the moon, and the oblate earth.

RELATED TO: RAND's continuing study of satellite orbit control requirements for NASA.
The study extends the results obtained in R-399-NASA, Perturbations of a Synchro-
nous Satellite, May 1962.

DISCUSSION AND METHODOLOGY: Now that long-lived earth satellites are orbited on a
relatively permanent basis, it is important to know the effect of long-term or-
bital perturbations, and the cost of controlling them. It is also interesting
to consider the effect of such perturbations on the motion of the increasing
debris in orbit. While the earth's inverse-square law gravitational field is
the major attraction on a satellite, perturbing forces arise from the attraction
of the sun, the moon, and the oblateness of the earth. The resultant force field
is neither central in direction nor inverse-square in magnitude. The components
of the perturbing forces that are normal to the orbital plane perturb the plane's

;;:i&e orientation relative to inertial space. Those

lying in the orbital plane cause changes in
the shape and orientation of the orbit in its
plane. The in-plane motion was analyzed in

R-399-NASA; in the present study emphasis is

on the determination of the orbital plane it-

self. The analysis applies to satellites in
near—-circular orbits at any inclination and
with orbital radii less than 10 earth radii.

The perturbed motion of an uncontrolled satel-

lite is described as seen from inertial space

and as seen from the rotating earth.

PRINCTPAL FINDINGS: The motion of the orbital
plane is such that its normal describes a coni-
cal surface relative to inertial space as shown
in the figure. The ground trace of a synchro-
nous—altitude orbit lying in the reference
plane is a figure eight with crossing-point on
the equator and a maximum latitude excursion of
7020'; this does not vary with time. An orbit
at an angle to the reference plane has a figure-
eight ground trace which varies with the re-
gression period. For a synchronous orbit that
is originally equatorial and "stationary,'" the
ground trace develops from a point to a figure
eight, with a latitude excursion of 14°940' after 26.6 years, and then reverses the
process. The total regression period is about 53 years. A fuel expenditure pro-
portional to the sine of twice the inclination angle relative to the reference
plane is required to stop orbital regression.
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PREFACE

As part of a continuing RAND study for the National Aeronautics
and Space Administration of the perturbations of earth satellites and
resulting orbital control requirements, this Report investigates the
gravitational effects of the sun, the moon and the oblate earth on the
orbital behavior of earth satellites. An extension of the results
obtained earlier in R-399-NASA, the analysis provides determination of
orbital control propulsion requirements and of the orbital regression
of earth satellites with no restriction on orbital altitude or incli-
nation. The general analytical solution for the regression of a satel-
lite obtained in the R can also be specialized to explain lunar re-
gression and the behavior.of low-altitude satellites.

The Report should be of interest to people dealing with satellite

systems which require high-precision long-term orbital control.
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SUMMARY

This Report presents an analysis of the long-term behavior of earth
satellites due to the gravitational effects of the sun, the moon and the
oblate earth. The importance of these effects has increased in recent
years because of interest in more precise orbital control and an increase
in expected payload lifetime. The fuel requirement for maintaining pre-
cise long-term orbital control in the presence of these gravitational
perturbations tends to dominate the overall fuel requirement for orbit
and attitude control. As a result, it is of increasing interest to de-
termine first whether the magnitude of the long-term orbital perturba-
tions of an uncontrolled satellite is compatible with the requirements
of a given satellite mission during its expected payload lifetime. If
the orbital perturbations exceed acceptable values, it is necessary to
investigate methods whereby these perturbations can be controlled,
either actively or passively. 1In addition, it is of interest to con-
sider the effect of these long-term perturbations on the motion of the
increasing collection of debris in orbit. This Report deals with all
of these problems.

The analysis presented here applies to satellites in near-circular
orbits at any inclination and with orbital radii which are small compared
to the radius of the moon's orbit (i.e., less than 10 earth radii). The
formulation takes into account the rotation of the earth around the sun,
the rotation of the earth-moon system about its center of mass and the
regression of the moon's orbital plane about the normal to the ecliptic.

The major effect of the perturbing influences considered is to pro-

duce motion of the orbital plane relative to inertial space. The nature
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of this motion can be completely described by the trace of the normal

to the orbital plane on a sphere concentric with the earth. It is shown
that for an orbit of a given radiusban orbital orientation can be found
which remains invariant relative to inertial space. This invariant plane
has a common intersection with the earth's equatorial plane and the plane
of the ecliptic, while its inclination to the latter is always less than
that of the equatorial plane. For low-altitude orbits, the invariant
plane is very nearly equatorial, with an inclination of 23°27' relative
to the ecliptic. As the orbital altitude increases, the value of the
inclination decreases to 16°7' at synchronous altitude and approaches
zero for extremely high orbits.

For an orbit of a given altitude, the trace of the normal to the
invariant plane on the sphere described above is a single point between
the earth's polar axis and the normal to the ecliptic. For orbits of
the same radius but different orientations, two types of motion are pos-
sible. TIf the initial inclination of the orbit relative to the corre-
sponding invariant or reference plane is less than about 800, the normal
to the orbital plane rotates about the normal to the reference plane with
an essentially constant angular rate and inclination angle. The resulting
trace on the sphere is a circle with center on the normal to the reference
plane. If the initial inclination is in excess of 800, the trace of the ~
normal to the orbital plane on the sphere may be an ellipse with its
center on a line in the direction of the vernal equinox and major axis
in the reference plane.

The regression period at zero inclination varies from .l year for
a surface orbit to about 53 years for a synchronous orbit and a maximum

of about 75 years for an orbit of radius equal to 9 earth radii. As the
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inclination increases, the period varies inversely as the cosine of the
inclination angle. On the other hand, the regression period corresponding
to the elliptical contours has a minimum value as the ellipse approaches

a point, and increases toward infinity as the major axis appreaches 90°.
However, since high-inclination orbits are of relatively little interest,
the emphasis in this Report is on the first type of regression, which is
illustrated by the frontispiece.

It should be noted that superposed on this steady-state motion are
oscillatory perturbations in both regression rate and orbital inclination
which cause the instantaneous position of the normal to the orbital plane
to oscillate relative to its steady-state motion. However, it is shown
that the displacement is less than half a degree.

It is of particular interest to observe the effect of this orbital
regression on the relative motion of synchronous altitude satellites as
seen from the rotating earth. Since the orbital altitude is assumed to
be constant, this relative motion is completely described by the trace
of the subsatellite point on the earth's surface.

The reference plane corresponding to a synchronous altitude orbit
has an inclination of 16°7' relative to the ecliptic, as compared with
an inclination of 23°27' for the earth's equatorial plane. Since the
orientation of a synchronous orbit in this plane remains invariant rela-—
tive to inertial space, its inclination of 7020' relative to the earth's
equatorial plane is also invariant. As a result, the trace of the sub-
satellite point on the surface of the rotating earth is the character-
istic figure-eight pattern with a maximum latitude excursion on either

side of the equator equal to the inclination angle of 7°20' relative to



wii

the equatorial plane. 1In addition, the maximum longitude excursion
relative to the equatorial crossing position is of the order of *15 min
of arc. This ground trace is repeated once each orbit with no variation
in size or shape. Similarly, if the orbital plane of a synchrenous orbit
is perpendicular to the reference plane and polar relative to the earth,
it remains stationary relative to inertial space, and its ground trace

on the rotating earth also repeats itself on each orbit. However, for
such an orbit, the ground trace varies from -90° to +90° in latitude

each day.

For any other inclination of a synchronous orbit relative to the
reference plane, it is found that the maximum latitude or amplitude of
the figure eight varies as a function of time. This is due to the fact
that the maximum latitude is equal to the inclination of the orbit rela-
tive to the equatorial plane, and although the inclination relative to
the reference plane is fixed, that relative to the equatorial plane varies
as the orbit regresses. The resulting variation in the ground trace am-
plitude has a periodicity equal to that of the regression and a magnitude
which can never exceed 14°40'. 1In addition, it is found that the longi-
tude of the equatorial crossing also oscillates with the regression
period and with an amplitude which may be as large as 7020', depending
on the orbital inclination relative to the reference plane. -

In regard to these variations in the size and shape of the ground
trace, it is of particular interest to consider the long-term behavior
of a satellite which is initially in a synchronous equatorial orbit.

Such a satellite is ordinarily referred to as stationary since it appears
to be fixed relative to the earth. However, its orbit is actually in-

clined to its reference plane at an angle of 7°20' and has a regression
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period of about 53 years. As the orbital plane regresses, its inclina-
tion to the equatorial plane increases from 0° at an average initial
rate of .863° per year. At the end of half the regression period this
inclination reaches a maximum of 14040', after which it decreases sym-
metrically to 0° after a complete regression period. Since the maximum
latitude excursion during an orbit is equal to the orbital inclination
to the equator, the resultant ground trace is initially an equatorial
point but develops into a figure eight which reaches a maximum amplitude
of 14°40' before decreasing to the original equatorial point at the end
of the regression period. During this cycle, the position of the equa-
torial crossing oscillates with the regression period with an amplitude
of .470, moving to the east of its initial position during the first
half of the cycle and to the west during the second half. It should be
noted that these variations in longitude are superposed on the shorter
period (~ 2-year) oscillations due to the equatorial ellipticity de-
scribed in Ref. 1.

It is seen that a passive satellite cannot remain truly stationary
relative to the rotating earth, and that its earth trace can remain in-
variant only for certain orbital inclinations. Since a given satellite
mission may require a fixed ground trace which is not inherently in-
variant, it is of interest to determine the amount of control necessary~—
to produce the desired invariance. It is seen that such an invariant
ground trace can exist only if the orientation of the orbital plane re-
mains fixed in inertial space. By applying appropriate control impulses
normal to the orbital plane, it is possible to reduce the steady-state

orbital regression rate to zero. Under these conditions, the orbital



orientation and the resulting ground trace have the desired invariance.
The control impulse required per year to achieve this invariance is pro-
portional to the sine of twice the inclination angle of the orbit to its
reference plane. Thus, the magnitude of the control impulse per year
depends as follows on the desired value of the ground trace amplitude.
For an amplitude of OO, the required control impulse has an average
value of 152 ft/sec/year, which decreases to zero for an amplitude of
7°20', after which it increases to a maximum of 580 ft/sec/year for an
amplitude of 45°. The impulse requirement for amplitudes between 45°
and 90° is a mirror image of that from 0° to 450, decreasing to zero

at 82°40' and increasing again to 152 ft/sec/year at 90°. It should

be noted that these values represent a long-term average control re-
quirement, neglecting the oscillatory components of the orbital re-
gression. 1In the event that it is necessary to control these oscilla-
tory variations, the control requirement in a given year might deviate
from its average value by as much as 30 ft/sec, depending on the ampli-
tude and phase of the oscillatory terms.

If instead of an invariant ground trace, a given mission requires
merely an upper limit on its latitude excursion, it may be possible to
satisfy this condition passively. If the initial orbital inclination
to the equator is made equal to the upper limit of the latitude excur-
sion, then by a suitable choice of the initial regression phase the in-
clination to the orbital plane will decrease to 0° before it again in-
creases to its initial value. -
In this way the time during which the latitude excursion remains

below its upper limit is maximized. If this time is longer than the
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expected payload lifetime, this passive technique can be used to satisfy
the mission requirement. However, the decision regarding the use of
active or passive orbit control depends on the tolerances in ground
trace amplitude and the required mission lifetime.

Finally, the analysis of orbital regression developed here for
artificial satellites is extended to inc;ude the regression of the moon.
This requires an expansion of the basic theory to include higher order

terms as shown in Appendix E.
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I. INTRODUCTION

In the ten years since the launching of the first Sputnik, a rather
impressive amount of hardware has been placed in orbit around the earth
in the fulfillment of various satellite missions. During the early years
of this period, the lifetime of a given satellite mission was short and
there was little interest in precise long-term orbital control. However,
in recent years, as technology has developed which can take advantage
of precisely controlled synchronous orbits with long-life potential, it
has become important to know (1) the effect of long-term orbital per-
turbations on the satellite mission, and (2) the cost of controlling
these perturbations.

It is well known that if the only force on a satellite is the in-
verse-square-law gravitational attraction of the earth, then the re-
sulting orbit is an ellipse with one focus at the earth's center. 1In
addition, the direction of the normal to this orbital plane remains
fixed relative to inertial space. While the earth's inverse-square field
is the major attraction on the satellite, it is necessary to consider
the perturbing forces which might produce long-term changes in the basic
orbital motion described above. Three such forces are those due to the
attractions of the sun and the moon and that arising from the oblateness
of the earth. Since the resultant force field when these effects are i;:
cluded is neither central in direction nor inverse-square in magnitude,
the resulting orbital perturbations may be of two types. Those components
of the perturbing forces which are normal to the orbital plane produce
perturbations in the plane's orientation relative to inertial space.

Those components which lie in the plane cause alterations in the shape



and orientation of the orbit in its plane.

In Ref. 1, the effects of the sun and the moon on a satellite in
a synchronous equatorial orbit are determined. The results show that
the in-plane perturbations are of the nature of small amplitude oscil-
lations in the satellite's position relative to its nominal unperturbed
position. The maximum excursion is of the order of 45 mi. It is also
found that the perturbations in the attitude of the orbital plane are
of the nature of a slow change in its inclination to the equatorial
plane at a rate of about .850/year. The analysis also indicates a slow
sinusoidal increase to a maximum inclination of about 20° and a return
to 0° after a period of about 73 years. However, these two values are
only approximate, since a 20° angle exceeds the small angle assumption
used in the perturbation analysis.

This Report gives a more general determination of the orbital per-
turbations resulting from the gravitational attractions of the sun and
moon and from the oblateness of the earth, and it places no restriction
on the magnitude of the orbital inclination. The emphasis is primarily
on the determination of the motion of the orbital plane since it is not
anticipated that the in-plane motion will differ greatly from that de-
termined in Ref. 1. By means of the analysis presented here, the per-
turbed motion of an uncontrolled satellite is described both as seen frem
inertial space and as seen from the rotating earth. 1In addition, the fuel
requirement to maintain a fixed orientation of the orbital plane relative

to inertial space is determined.



II. METHOD OF ANALYSIS

STATEMENT OF THE PROBLEM

The problem to be solved in this Report can be stated as follows:
If a satellite is in a circular orbit around the earth with a known
initial orientation of its orbital plane relative to inertial space,
determine the motion of this orbital plane as it is affected by the
gravitational attraction of the sun, the moon and the oblate earth.

For the purposes of this analysis it is assumed that the orbital
altitude is sufficiently high that forces due to residual drag can be
neglected. 1In addition, by assuming a small area-to-mass ratio for the
orbiting object, the effects of solar radiation pressure can also be
neglected. The ellipticity of the earth's equatorial section is also
omitted since its effect on orbital regression is negligible.

Finally, the positions of the sun and the moon relative to the earth
are specified as known functions of time according to the following model.
The center of mass of the earth-moon system moves on a circular orbit
around the sun with a period of one sidereal year, and the plane of the
motion is that of the ecliptic.* The earth and moon rotate about their
common center of mass with a constant separation and a period of one
sidereal month. The plane of this rotation is inclined at an angle of
5°8' to the ecliptic and regresses about the normal to the ecliptic

with a period of 18.6 years.

*

Strictly speaking, the plane of the ecliptic is defined by the
motion of the earth's center of mass; however this differs in orienta-
tion by about 1 sec of arc from the plane defined above.



DEFINITION OF COORDINATES

Reference Systems

In the formulation of the equations of motion and the description
of the resulting motion, it is convenient to define the following ref-
erence systems.

Xgs Yoo Zg- This is an inertial reference system with its origin

at the center of the sun; its XgYg plane is the ecliptic and its Xg axis

is in the direction of the earth at the time of the vernal equinox.

Xy Yoo Zg¢ This and all the remaining reference systems are geo-

centric. This particular one maintains its axes parallel to the corre-

sponding ones in the x system. Thus, every point of this sys-

s’ Ys* %g

tem is under a constant acceleration in a direction parallel to the earth-

sun line. The unit vectors associated with this and the previous sys-

tem are represented as i s E , kK .
o o 0

X1 yl, zl. This system is rotated relative to X 5 Yoo %, through

an angle al about their common x axes as shown in Fig. 1. This system

is the one relative to which the motions of the orbital plane are ex-

pressed. The appropriate value of o, is determined in the course of the

1
analysis. The associated unit vectors are represented as Il’ 31, El'
xG, yG, zG. This system has a common x axis with the two previous

systems, while the x plane is the earth's equatorial plane, which

el
makes an angle A = 23°27" with the ecliptic or XY, plane as shown in

Fig. 1. The associated unit vectors are represented as Ié, Eé, kG.
X, ¥, z. This is the orbital coordinate system with the x axis
passing through the satellite and the xy plane representing the instan-

taneous orbital plane. The orientation of this system relative to the
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xl,.yl, z1 system is specified by the three angles o, § and 8 as shown
in Fig. 2. The angle @ is the angle between the xy (orbital) plane
and the X191 (reference) plane. The angle | is the regression angle
measured from the x, axis to the line of nodes, ON. Finally the angle

1

© is the orbital angle measured from the line of nodes to the x axis.
The associated unit vectors are represented as I, E, k.

It should be noted that an additional relation between o, | and
® is required to insure that the xy plane is indeed the instantaneous
orbital plane. This relation is determined in the derivation of the
equations of motion.

xm, ym, zm. This is the lunar reference system in which the xm
axis passes through the center of mass of the moon and the X Yo plane
represents the moon's orbital plane. The.orientation of this system
relative to the X s Yoo 2 system is specified by the three angles am,
wm and Gm as shown in Fig. 3, where it is seen that these angles are
analogous to o, ¥ and 6 for the satellite orbital system. As before,

the associated unit vectors are represented as im, jm, "
The direction cosines relating these various systems are listed

in Appendix A.

Position Vectors

The relative positions of the sun, moon, earth and satellite can
be described vectorially as shown in Fig. 4, in which the various vec-

tors are defined as follows.









Earth-moon center
of mass

Fig.4— Position vectors
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The vector R is from the center of the sun to the center of mass
of the earth-moon system. In accordance with the assumed motion of this
system around the sun,

R = er = R(1O cos @ + j, sin ®) (1)

where R is constant and equal to the earth's orbital radius, while ®
varies linearly with time.
The vector 3; is from the center of the earth to the center of the

moon and lies along the X axis. It can be expressed as
p =0 i (2)

where s is a constant and equal to the earth-moon separation.
The vector r is from the earth's center to the satellite along the

x axis and can be expressed as
T = ri (3)
where r is the magnitude of r and is one of the orbital variables to be

determined.

In addition to these basic vectors, it is convenient to define cer-

tain others that are of use in the formulation of the equations of
motion, although they can be expressed in terms of those already de-
fined. The vector Eﬁ from the earth's center to the center of mass
of the earth-moon system can be expressed as
—_ 1 —
= = 4
P =5 % (4)
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where
+ M
B 5

and ME and Mm are the masses of the earth and moon respectively.

The vector ﬁﬁ from the sun's center to the earth's center is

given by

R, =R -5, (6)

The vector R[n from the sun's center to the moon's center is given by

O )

The vector ;S from the sun's center to the satrellite is expressed as

— - 1_ -—
=R - = +
rg R m Py r (83
The vector ;m from the moon's center to the satellite is given by
r =T - P €))

Angular Velocity Vectors
The relative motion of the various coordinate systems defined pre-

viously can be expressed in terms of the following angular velocity

vectors.
The angular velocity, EE, of the center of mass of the earth-moon

system around the sun can be expressed as
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@, = ® kO (10)

where ® is a constant equal to .0172 rad/solar day. This corresponds
to a period of one sidereal year.

The angular velocity, ZR, of the earth-moon system about its center
of mass and relative to inertial space is given by the expression

“n emkm + wmko (11)

where ém is the moon's orbital rate of .22998 rad/solar day, corresponding
to a period of one sidereal month, while ém is the regression rate of the
moon's orbital plane and has a value of -9.249 x 10_4 rad/solar day,

corresponding to a period of 18.6 years.

The angular velocity Eﬁ of the earth about its axis is given by

8. = B k (12)

where éE is equal to 6.3004 rad/solar day, corresponding to a period of

one sidereal day.

The orbital angular velocity, a%, of the satellite around the earth's

center relative to inertial space is expressed in terms of the three or-

bital angles as follows

p—

w = Yk, + @ (T, cos ¥ + 3, sin ¥) + ok (13)

where ¢, o and 9 are the orbital variables to be determined together

with r.
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FORMULATION OF THE EQUATIONS OF MOTION

The derivation of the equations of motion of the satellite relative
to the earth is presented in this section in abbreviated form; the de-
tails are given in Appendix B.

The equations of motion of the satellite, the earth and the moon

relative to inertial space can be expressed in vector form as follows

= = 1 = = FSs + Fms + FEs
Satellite: Ig = R - ; o +r = Ms (14)
. . . F._+F
- -— 1 - SE mE
Earth: R =R - m G (15)
. . . F. +F
Moon: R =R+ (1 - l) p = Sm__ Em (16)
m Lo o Mm

In this derivation the dot notation for time derivatives signifies
a derivative relative to inertial space, while d/dt is a derivative re-
lative to the orbital (x, y, z) reference system. In addition, the sub-
scripts S, E, m and s refer to the sun, the earth, the moon and the -
satellite, respectively. When they are used with M, the mass of the
body they represent is indicated. When they are used with a vector

force, F, the first subscript determines the attracting body, while the

second defines the body on which the force acts.
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The vector equation of motion of the satellite relative to the earth

is obtained as the difference between Eqs. (14) and (15) in the form

= FSS + F s + FEs FSE + FmE
r = M - (17)

An evaluation of the forces on the right reduces Eq. (17) to the follow-

ing form

3J2R§ _
+ > (r - kG) kG
r
sl ER (r - P,) Py
pO
-@2;-3_2(;.§>§ (18)
R

where R0 is the earth's equatorial radius, G is the universal gravita- -
tional constant and J2 is the coefficient of the oblateness term in the
earth's potential function.

The three component equations of motion corresponding to the x, y

and z axes are obtained from Eq. (18) in the form
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- r@2[1 - 36, 'i')z] (19)
3J2GMER§ —_—
( ) = - r4 (kG i) (kG i)
3ré§l -
+ -1 G -3
+38°E D G, - D (20)
3J GMER2
= = 2 o = ™ =
(r'k)=-7——(kc-1) (kG-k)
3r.62 _ — _
+ um(im-i) (i -k
+ 3rr;)2(¥1 ‘D GE B (21)
The quantity ; is given by the relation
(22)

a’r dr d.(Bo - - - -
+2[wo XE]+[TExr]+[wo X [u)o Xr]]
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from which the left sides of Eqs. (19), (20) and (21) can be expressed

as

T 1) = §—§-+ r[(ﬂ% D@ - E%)] (23)

D (R K@ D G - D @2

= = dr — - dzg - - - =
(r - k) = - 2 It (ug - j) - r<_3? . j) + r(wo - 1) (ub - k) (25)

At this point, it is necessary to determine the constraint equation
which insures that the xy plane is the instantaneous orbital plane.
This condition requires that T as well as T must lie in the xy plane.

This can be satisfied if

(r - k)=0 (26)

from which it follows that
(w . 3) =0 (27)

and
dub

(7)o (28)
Thus, Eqs. (23), (24) and (25) can be simplified to the form

2

(?.I)-ia{--r(mo-i)z

(29)
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G -D-i3[P@ 0] (30)
(:1% - k) = r(&o - 1) (Too - k) (31)
where
(Zg - 1) = § sin 0 sin o + & cos 6 (32)
(Zg j) = § cos 8 sin o - & sin 8 (33)
(Eg . E) = & cos o + 6 (34)

The complete equations of motion of the satellite are obtained

by combining Eqs. (19)-(21), (27), (29) and (30)-(34) to give

2
2 3J R
.d_..%-r(é+1[:cosa)2=—GM§- 2GME°[1-3(EG.'{)2]
dt r 2r
52
m r ~ 2
e[, 7
- r®2[1 - 3@, - I)z] (35)
1 d[ 2,5 . 3J2GMERc2>————
;E[r(9+¢cosd)]=-T(kG-i)(kG'j)
Bréz

S CURERES I U )

+ 3r@2('r'1 D & oD (36)
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2
3J,GM_R
¥ = - ?ME° (EG-i)(kG-k)cose
(8 + ¥ cos a)r
362 o
+ - .m (i -+ i) (i + k) cos 8
m(8 + | cos @) "
%l - - = =
+ — - (r1 - i) (r1 « k) cos 6 (37)
(6 + § cos «)
3J GMER2
@ = - — - 2 05 (Eé - 1) (Eé - k) sin 0
(6 + ¢ cos o)r sin o
382 -
+ — G . 1) (G -k sin g
p(® + ¢ cos o) sin « " n
3% - T . T
+ - (r1 - i) (r1 . k) sin 9 (38)

(6 + § cos @) sin «

These four equations constitute the desired orbital equations of motion

in terms of the variables r, 6, o and ¥.

MOTION OF THE ORBITAL PLANE -~

The exact solution of the equations of motion as presented above
does not appear feasible since the terms resulting from earth oblate-
ness, the sun and the moon are rather involved functions of the unknowns
r, 9,  and y. To simplify the problem, it is assumed that the quan-
tities r, é, a and & can be represented as follows by a steady-state

value plus a perturbation.
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= + 6r 39
8 = 6, * 66 (40)
b=+ o (41)
o= a + S (42)

Since the forcing terms due to earth oblateness, the sun and the moon
in Eqs. (35) through (38) are in the nature of perturbations, it is

assumed that in these terms r, 8, ¥ and o can be replaced by their

steady-state values, while 0 and ¥ are expressed as

=06t (43)
y =¥t (44)
In addition, it is assumed that 8 is much greater than &, and that

the nominal orbit is circular. Thus, the steady-state values of r and

8 are given by

r = (45)
2 22 P
8 = Go r3 (46).-
o

With these assumptions, Eqs. (37) and (38) can be written as
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3J2R§éo o
o= - -——?—— (kG - i) (kG - k) cos 8
o

352
m

(.i-m . I) (-i‘m . k) cos ©

MGO

362

]
o}

(r

L 1) (-1-:1 - k) cos 8 47)

) 3J2R§éo o
1]! = - —2————— (kG ¢ 1) (kG * k) sin @
rosul czo

32

+—“l—(i «+ i) (i + k) sin ©
s . m m
0 sin o
(o] [0}

367 - = = .z
+ —— (rl - i) (r1 - k) sin 8 (48)

sin o
eo o

thus giving & and \1: as functions of time.
If the direction cosines tabulated in Appendix A are substituted

in Eqs. (47) and (48), they can be reduced to the form

127
o = 2 Ai sin wit (49)
i=1
127
. 1 z
LA N P~ = B, cos w.t (50)

~ i=1
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The details of this transformation are presented in Appendix C together
with a tabulation of the resulting expressions for the w_, Ai and Bi
values, as well as for &o'

An examination of this tabulation shows that the wi values are

linear combinations of the frequencies 90, 9 s @, #m and éo' In the

case of Ai and Bi’ they may be functions of any or all of the quantities

oy Oy s Go, L J2, ® and Bm. The presence of J2 in a given ampli-

tude indicates that this term is at least partially the result of earth
oblateness. Similarly, ® and ém indicate contributions due to the sun
and the moon, respectively. Thus, it is seen that the steady-state re-

gression rate, *o’ as well as the first seven oscillatory terms are the
result of a combination of all three perturbing influences. On the
other hand, those terms for which 8 € 1 € 22 are entirely due to solar
influence, while the rest of the terms (23 < i < 127) are due to the
moon.

The solutions for o and § can now be obtained by integrating Eqgs.

(40) and (50) to give

= o + 31 fi [1 - cos w,t] (51)
o [o] Lo W - i
. i
i=1
. . 127 B,
et T L B ot ot 32
o i=1 i

under the assumption that at t = 0, o = o, and § = 0.

It is now necessary to define the angle al between the reference

X,¥,) plane and thé plane of the ecliptic since the quantities & ’
171 1 o
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Ai and Bi are all functions of al. The selection of @, is dictated by
the fact that the analysis leading up to Eqs. (51) and (52) is based on
the assumption that‘the angle o between the orbital (xy) plane and the
reference (xlyl) plane remains essentially constant and equal to ao.

In view of this fact, a value of al should be selected which mini-
mizes the amplitudes of the oscillatory terms in Eq. (51). Particular
emphasis should be placed on the low-frequency terms because of the
factor l/wi' An examination of the Ai expressions in Appendix C shows
that the only reasonable choice for 01 is that value which makes Al’
the coefficient associated with the frequency, ¢o’ identically zero,

as follows.

62 5 2J2é§R§
[1 + ——23 (2 - 3 sin Qh)] sin 2a1 -5 sin 2(\ - al) =0 (53)
20 ® r,

which can be solved for o, in the form

1
27.5%R?
200
3 5 sin 2A
® ro
tan 2o, = . - , (54)
1 62 23 878"
1+ —2- (2 - 3 sin” « ) + cos 2X
«2 22 2
2u8 9T

This selection of o also makes the amplitudes A, , A6, Bl’ B4 and B6

identically zero since they all have the left side of Eq. (53) as a

factor.

In addition, the amplitudes A2, A3, A7, B2, B3 and B7 all involve

the factor f, given by
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é2
f= [1 + ——EE (2 -3 sin2 a )] sin2 o
Zu@ m 1

R 2
—5 5 sin O\ - al) (55)
(o]

While no choice of @, can make the factor f vanish, the value de-

termined by Eq. (54) does minimize f since

é2
%ﬁ_ = [1 + —-$5 (2 - 3 sin’ o )] sin 2 o)
oy 2u0 m
2J2é§R§
- = gin 2 (A - a.) (56)
2 2 1
® r0

which is equal to zero from Eq. (53) .

By the same type of reasoning it can be shown that this choice of
oy maximizes the amplitudes A5 and B5 associated with the frequency, Zéo.
However, this is a high-frequency term with a very small amplitude.

Thus, it causes very little change in the inclination angle, <.

With the determination of @y it is now possible to use Eqs. (51)
and (52) to describe the resulting motion of the orbital plane. 1In
Appendix D it is shown the remaining oscillatory terms result in less

than a .5° variation in the normal to the orbital plane. Thus, to a very

good approximation, the motion of the orbital plane is represented by
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a=a 7

o= ¢t (58)

which means that the orbital plane maintains a constant inclination, o s
relative to the selected reference plane but regresses about the normal

to the reference plane at a steady rate of éo given in Appendix C as

. 3@2 cos « éz 2 2
b= - ——|[1+ 25 @ -3¢ a) | (2 -3 sin® o)
o . 2 m 1
86 2u0
o
2J2é§R§ 5
+=222T2 - 36t (A - ap)] (59)

.2 2 1
® r

Thus, the motion of the orbital plane is completely described by
Eqs. (54), (57), (58) and (59).
In obtaining the above result, it was assumed in Eq. (44) that ¥
could be replaced by &ot in Eqs. (37) and (38). However, an examination
of Eqs. (50) and (59) shows that as the orbital inclination, o approaches
900, the above assumption is no longer valid, since io approaches zero
and Eq. (50) is dominated by the oscillatory terms. -
In Appendix F, the behavior of these high-inclination orbits is in-
vestigated in more detail. It is found that the representation of the
motion as described by Eqs. (57) through (59) is a good approximation of
the actual motion as long as the regression takes place about the z,

axis.
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IITI. RESULTS AND DISCUSSION

DETERMINATION OF ORBITAL REGRESSION

On the basis of the analysis presented in the previous section, it
is now possible to make a quantitative determination of the orbital re-

gression rate and its axis of rotation.

Reference Plane

An examination of Eq. (54) shows that the inclination, « of the

1°
reference plane is a function of orbital radius. The relationship is
shown in Fig. 5, which gives @y aé a function of r- It is seen that

for low-altitude orbits, for which the earth's oblateness is the dominant
perturbing influence, the reference plane is very nearly coincident

with the earth's equatorial plane (a1 = 23027'). This is due to the

fact that the equatorial plane is one of symmetry for the oblateness
effect. Similarly, for high-altitude orbits, for which the combi-
nation of the solar and lunar effects becomes dominant, the reference

plane approaches the plane of the ecliptic (al = 00). Again, this is

due to the symmetry of these two effects relative to this plane.

Steady-State Motion

The steady-state regression of the orbital plane as specified by
Eqs. (57) and (58) is represented in Fig. 6, in which the normal to the
orbital plane (the z axis) maintains a fixed angle, o s with respect to

the normal to the reference plane (the z., axis). At the same time, the

1

z axis rotates about zy at an angular rate wo’ tracing a circular contour

on the spherical surface as shown. The residual oscillatory terms
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Fig.5— Dependence of reference plane inclination on orbital radius
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in Eqs. (51) and (52) cause small variations in this trace, but, as
shown in Appendix D, these residual oscillatory terms are negligible.
While the z axis maintains a fixed angle, ao, relative to the z,

axis during its regression, it is seen from Fig. 6 that the angle aG

between the z axis and the earth's polar axis (the z axis) varies be-

G

tween the limits

%, s Iao - (A - a1)| (60)
min
and
o, A G 011) (61)
max

Thus, ac, which represents the inclination of the orbital plane to the
earth's equatorial plane, will vary slowly as a result of the regression

about the z1 axis.

The regression period, the time req